Skip to main content

Model-Agnostic Adversarial Example Detection Through Logit Distribution Learning

Yaopeng Wang, Lehui Xie, Ximeng Liu, Jia-Li Yin, Tingjie Zheng

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:08:15
20 Sep 2021

Recent research on vision-based tasks has achieved great improvement due to the development of deep learning solutions. However, deep models have been found vulnerable to adversarial attacks where the original inputs are maliciously manipulated and cause dramatic shifts to the outputs. In this paper, we focus on adversarial attacks in image classifiers built with deep neural networks and propose a model-agnostic approach to detect adversarial inputs. We argue that the logit semantics of adversarial inputs follow a different evolution with respect to original inputs, and construct a logits-based embedding of features for effective representation learning. We train an LSTM network to further analyze the sequence of logits-based features to detect adversarial examples. Experimental results on the MNIST, CIFAR-10, and CIFAR-100 datasets show that our method achieves state-of-the-art accuracy for detecting adversarial examples and has strong generalizability.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00