Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:12:21
21 Sep 2021

This paper proposes a new way of regularizing an inverse problem in imaging (e.g., deblurring or inpainting) by means of a deep generative neural network. Compared to end-to-end models, such approaches seem particularly interesting since the same network can be used for many different problems and experimental conditions, as soon as the generative model is suited to the data. Previous works proposed to use a synthesis framework, where the estimation is performed on the latent vector, the solution being obtained afterwards via the decoder. Instead, we propose an analysis formulation where we directly optimize the image itself and penalize the latent vector. We illustrate the interest of such a formulation by running experiments of inpainting, deblurring and super-resolution. In many cases our technique achieves a clear improvement of the performance and seems to be more robust, in particular with respect to initialization.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $85.00
    Non-members: $100.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00