Skip to main content

Fast And Accurate Scene Parsing Via Bi-Direction Alignment Networks

Yanran Wu, Xiangtai Li, Chen Shi, Yunhai Tong, Yang Hua, Tao Song, Ruhui Ma, Haibing Guan

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:07:41
21 Sep 2021

In this paper, we propose an effective method for fast and accurate scene parsing called Bidirectional Alignment Network (BiAlignNet). Previously, one representative work BiSeNet [1] uses two different paths (Context Path and Spatial Path) to achieve balanced learning of semantics and details, respectively. However, the relationship between the two paths is not well explored. We argue that both paths can bene‹ª�t each other in a complementary way. Motivated by this, we propose a novel network by aligning two-path information into each other through a learned ‹ª?ow ‹ª�eld. To avoid the noise and semantic gaps, we introduce Gated Flow Alignment Module to align both features in a bidirectional way. Moreover, to make the Spatial Path learn more detailed information, we present an edge-guided hard pixel mining loss to supervise the aligned learning process. Our network achieves 80.1% and 78.5% mIoU in validation and test set of Cityscapes while running at 30 FPS with full resolution inputs. Code and models will be available in due course.

Value-Added Bundle(s) Including this Product

More Like This