Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:08:24
21 Sep 2021

3D hand-object pose estimation is an important issue to understand the interaction between human and environment. Current hand-object pose estimation methods require detailed 3D labels, which are expensive and labor-intensive. To tackle the problem of data collection, we propose a semi-supervised 3D hand-object pose estimation method with two key techniques: pose dictionary learning and an object-oriented coordinate system. The proposed pose dictionary learning module can distinguish infeasible poses by reconstruction error, enabling unlabeled data to provide supervision signals. The proposed object-oriented coordinate system can make 3D estimations equivariant to the camera perspective. Experiments are conducted on FPHA and HO-3D datasets. Our method reduces estimation error by 19.5% / 24.9% for hands/objects compared to straightforward use of labeled data on FPHA and outperforms several baseline methods. Extensive experiments also validate the robustness of the proposed method.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $85.00
    Non-members: $100.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00