Unsupervised Person Re-Identification Via Global-Level And Patch-Level Discriminative Feature Learning
Zongzhe Sun, Feng Zhao, Feng Wu
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 00:10:18
Due to the lack of labeled data, it is usually difficult for an unsupervised person re-identification (re-ID) model to learn discriminative features. To address this issue, we propose a global-level and patch-level unsupervised feature learning framework that utilizes both global and local information to obtain more discriminative features. For global-level learning, we design a global similarity-based loss (GSL) to leverage the similarities between whole images. Along with a memory-based non-parametric classifier, the GSL pulls credible samples closer to help train a discriminative model. For patch-level learning, we use a patch generation module to produce different patches. Applying the patch-based discriminative feature learning loss and image-level feature learning loss, the patch branch in the network can learn better representative patch features. Combining the global-level learning with patch-level learning, we obtain a more distinguishable re-ID model. Experimental results obtained on Market-1501 and DukeMTMC-reID datasets validate that our method has great superiority and effectiveness in unsupervised person re-ID.