3DCT Reconstruction From A Single X-Ray Projection Using Convolutional Neural Network
Estelle Lo�en, Damien Dasnoy-Sumell, Beno�t Macq
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 00:09:21
While immersive media have been shown to generate more intense emotions, saliency information has been shown to be a key component for the assessment of their quality, owing to the various portions of the sphere (viewports) a user can attend. in this article, we investigate the tri-partite connection between user attention, user emotion and visual content in immersive environments. To do so, we present a new dataset enabling the analysis of different types of saliency, both low-level and high-level, in connection with the user's state in 360� videos. Head and gaze movements are recorded along with self-reports and continuous physiological measurements of emotions. We then study how the accuracy of saliency estimators in predicting user attention depends on user-reported and physiologically-sensed emotional perceptions. Our results show that high-level saliency better predicts user attention for higher levels of arousal. We discuss how this work serves as a first step to understand and predict user attention and intents in immersive interactive environments.