Skip to main content

UNCERTAINTY AWARE IMPLICIT IMAGE FUNCTION FOR ARBITRARY-SCALE SUPER-RESOLUTION

Swastik Jena, Saptarshi Panda, Bunil Kumar Balabantaray, Rajashree Nayak

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
Poster 09 Oct 2023

The most integral step in computer vision and image processing tasks is the representation of images. Recently, continuous image parameterization using Implicit Neural Representations (INR) has shown a great advantage over discrete representations due to their spatial invariance. This property immediately finds application in the context of single-image super-resolution (SISR) at an arbitrary scale. However, most super-resolution models, including the INR-based Local Implicit Image Function (LIIF), produce only a single output, failing to address the ill-posedness of SISR. Moreover, these models tend to optimize a mean-squared-error (MSE) based loss function which causes blurring and structural distortion in regions exhibiting a high degree of variance (details). Our work proposes a novel uncertainty-aware self-supervised methodology (U-LIIF) that extends on LIIF, to reduce the blurriness and deals with the ill-posedness of SISR. Our U-LIIF does not require any re-training and yields diversified high-resolution images by leveraging model uncertainty. The efficacy of the proposed method is validated by substantial experiments on various benchmark datasets.

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00