Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 11:35
03 Apr 2020

We study the effect of the selection of diffeomorphic normalization in the performance of Spasov's deep-learning system for the problem of progressive MCI vs stable MCI discrimination. We considered different degrees of normalization (no, affine and non-rigid normalization) and two diffeomorphic registration methods (ANTS and BL PDE-LDDMM) with different image similarity metrics (SSD, NCC, and lNCC) yielding qualitatively different deformation models and quantitatively different degrees of registration accuracy. BL PDE-LDDMM NCC achieved the best performing accuracy with median values of 89%. Surprisingly, the accuracy of no and affine normalization was also among the highest, indicating that the deep-learning system is powerful enough to learn accurate models for pMCI vs sMCI discrimination without the need for normalization. However, the best sensitivity values were obtained by BL PDE-LDDMM SSD and NCC with median values of 97% and 94% while the sensitivity of the remaining methods stayed under 88%.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00