Skip to main content

Topology Highlights Neural Deficits of Post-Stroke Aphasia Patients

Yuan Wang, Roozbeh Behroozmand, Lorelei Philip Johnson, Julius Fridriksson

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 12:01
03 Apr 2020

Statistical inference of topological features decoded by persistent homology, a topological data analysis (TDA) algorithm, has been found to reveal patterns in electroencephalographic (EEG) signals that are not captured by standard temporal and spectral analysis. However, a potential challenge for applying topological inference to large-scale EEG data is the ambiguity of performing statistical inference and computational bottleneck. To address this problem, we advance a unified permutation-based inference framework for testing statistical difference in the topological feature persistence landscape (PL) of multi-trial EEG signals. In this study, we apply the framework to compare the PLs in EEG signals recorded in participants with aphasia vs. a matched control group during altered auditory feedback tasks.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00