Signet Ring Cells Detection in Histology Images with Similarity Learning
Yibao Sun, Xingru Huang, Edgar Giussepi Lopez Molina, Le Dong, Qianni Zhang
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 07:37
The detection of signet ring cells in histology images is of great value in clinical practice. However, several reasons such as appearance variations and lack of well-labelled data make it a challenging task. Considering the intrinsic characteristics of signet ring cell images, a dedicated similarity learning network is designed in this paper to help the discovery of distinctive feature representations for ring cells. Specifically, we adapt the region proposal network and add an embedding layer to enable similarity learning for training the model. Experimental results show that similarity learning can strengthen the performance of the state-of-the-art and makes our approach competent for the task of signet ring cell detection.