Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 13:18
03 Apr 2020

In conventional registration methods, regularization functionals and balancing hyper-parameters need to be designed and tuned. Even so, heterogeneous tissue property and balance requirement remain challenging. In this study, we propose a registration network with a novel deformation representation model to achieve spatially variant conditioning on the deformation vector field (DVF). In the form of a convolutional auto-encoder, the proposed representation model is trained with a rich set of DVFs as a feasibility descriptor. Then the auto-encoding discrepancy is combined with fidelity in training the overall registration network in an unsupervised learning paradigm. The trained network generates DVF estimates from paired images with a single forward inference evaluation run. Experiments with synthetic images and 3D cardiac MRIs demonstrate that the method can accomplish registration with physically and physiologically more feasible DVFs, sub-pixel registration errors and millisecond execution time, and incorporation of the representation model improved the registration network performance significantly.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00