Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 16:19
03 Apr 2020

Head motion during functional Magnetic Resonance Imaging acquisition can significantly contaminate the neural signal and introduce spurious, distance-dependent changes in signal correlations. This can heavily confound studies of development, aging, and disease. Previous approaches to suppress head motion artifacts have involved sequential regression of nuisance covariates, but this has been shown to reintroduce artifacts. We propose a new motion correction pipeline using an omnibus regression model that avoids this problem by simultaneously capturing multiple artifact sources using the best performing algorithms for each artifact. We quantitatively evaluate its motion artifact suppression performance against sequential regression pipelines using a large heterogeneous dataset (n=151) which includes high-motion subjects and multiple disease phenotypes. The proposed concatenated regression pipeline significantly reduces the association between head motion and functional connectivity while significantly outperforming the traditional sequential regression pipelines in eliminating distance-dependent head motion artifacts.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00