Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 15:05
03 Apr 2020

Breast tumor segmentation provides accurate tumor boundary, and serves as a key step toward further cancer quantification. Although deep learning-based approaches have been proposed and achieved promising results, existing approaches have difficulty in detecting small breast tumors. The capacity to detecting small tumors is particular-ly important in finding early stage cancers using computer-aided diagnosis (CAD) systems. In this paper, we propose a novel deep learning architecture called Small Tumor-Aware Network (STAN), to improve the performance of segmenting tumors with different size. The new architecture integrates both rich context information and high-resolution image features. We validate the proposed approach using seven quantitative metrics on two public breast ultrasound datasets. The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00