Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 06:50
03 Apr 2020

In signal processing, the union of subspaces (UoS) model is widely used to represent a signal. This model provides foundation for the low-rank methods, dictionary learning and so on, which are usually used as a prior in compressed sensing. These methods are well-understood with rich theoretical guarantees. The performance of these methods was challenged by deep architectures. In this work, we would like to develop a generative model called union of surfaces (UoSs) model, which can enjoy the benefits of both classical methods and deep architectures. We will develop this generative model by discussing a) how to learn the generative surfaces from training data, and b) how to learn a function from training data.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00