Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:02:17
21 Apr 2023

We propose a federated linear mixed-effects (LME) model to perform a large-scale analysis of data gathered from different collaborations without the need to pool or share the actual data. This method is efficient as it overcomes the hurdles of data privacy for sharing and has lower bandwidth and memory requirements for analysis than the centralized modeling approach. Our decentralized LME approach is optimized for neuroimaging data. We evaluate our model using features extracted from structural magnetic resonance imaging (sMRI) data. Results demonstrate that federated (decentralized) LME models achieve similar performance compared to the models trained with all the data in one location.

More Like This

21 Apr 2023

Oral 7: RGB

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00