Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:02:17
21 Apr 2023

In this paper, we describe a deep neural network architecture based on Swin UNETR and U-Net for segmenting the pulmonary arteries from CT scans. The final segmentation masks were created using an ensemble of six models, three based on Swin UNETR and three based on 3D U-net with residual units. Using this strategy, our group scored 84.36 percent on the multi-level dice. We conducted additional investigation and separated the task into three major subtasks: Task 1: Use the default hyperparameters for plain UNET segmentation and experiment with the patch size, a key hyperparameter for UNET segmentation models. Task 2 : Develop a lung segmentation model that distinguishes between the major pulmonary artery and the branches in order to precisely assess the model's performance. Task 3 : Examining the mask by extracting small patches near the branches and large patches around the major pulmonary artery.

More Like This

21 Apr 2023

Oral 7: RGB

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00