Skip to main content

Data Driven Patient-Specialized Neural Networks for Blood Glucose Prediction

Alessandro Aliberti, Andrea Bagatin, Andrea Acquaviva, Enrico Macii, Edoardo Patti

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 09:13
06 Jul 2020

Diabetes is an autoimmune disease characterized by glucose levels dysfunctions. It involves continuous monitoring combined with insulin treatment. Nowadays, continuous glucose monitoring systems (CGMs) have led to a greater availability of data. These can be effectively used by machine learning techniques to infer future values of the glycaemic concentration, allowing the early prevention of dangerous states and a better optimisation of the diabetic treatment. In this work, we investigate a patient-specialized prediction model. Thus, we designed a specialized solution based on Long Short-Term Memory (LSTM) neural network. Our solution was experimentally compared with two literature approaches, respectively based on Feed-Forward (FNN) and Recurrent (RNN) neural networks. The experimental results have highlighted that our LSTM solution obtained good performance both for short- and long-term glucose level inference (60 min.), overcoming the other methods both in terms of correlation between measured and predicted glucose signal and in terms of clinical outcome.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00