Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 09:59
06 Jul 2020

Deep learning is becoming more and more relevant for multiple multimedia processing tasks, and lately it has raised much interest in the coding arena notably for images and point clouds. While offering near state-of-the-art compression performance, current deep learning-based point cloud coding solutions have a shortcoming since they require training and storing multiple models in order to obtain different rate-distortion trade-offs. This paper proposes a solution that effectively reduces the number of deep learning models that need to be trained and stored by applying explicit quantization to the latent representation, which can be controlled at coding time, to generate varying rate-distortion trade-offs. The proposed implicit-explicit quantization combination achieves a compression performance that is equivalent or better than the alternative, while significantly reducing the model storage memory requirements.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00