Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 05:23
08 Jul 2020

Training deep neural networks (DNNs) in the presence of noisy labels is an important and challenging task. Probabilistic modeling, which consists of a classifier and a transition matrix, depicts the transformation from true labels to noisy labels and is a promising approach. However, recent probabilistic methods directly apply transition matrix to DNN, neglect DNN's susceptibility to overfitting, and achieve unsatisfactory performance, especially under uniform noise. In this paper, inspired by label smoothing, we proposed a novel method, in which a smoothed transition matrix is used for updating DNN, to restrict the overfitting of DNN in probabilistic modeling. Our method is termed Matrix Smoothing. We also empirically demonstrate that our method not only improves the robustness of probabilistic modeling significantly, but also even obtains a better estimation of the transition matrix.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00