Skip to main content

Physical Model Guided Deep Image Deraining

Honghe Zhu, Cong Wang, Yajie Zhang, Zhixun Su, Guohui Zhao

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 07:36
08 Jul 2020

Single image deraining is an urgent task because the degraded rainy image makes many computer vision systems fail to work, such as video surveillance and autonomous driving.
So, deraining becomes important and an effective deraining algorithm is needed.
In this paper, we propose a novel network based on physical model guided learning for single image deraining, which consists of three sub-networks: rain streaks network, rain-free network, and guide-learning network.
The concatenation of rain streaks and rain-free image that are estimated by rain streaks network, rain-free network, respectively, is input to the guide-learning network to guide further learning and the direct sum of the two estimated images is constrained with the input rainy image based on the physical model of rainy image.
Moreover, we further develop the Multi-Scale Residual Block (MSRB) to better utilize multi-scale information and it is proved to boost the deraining performance.
Quantitative and qualitative experimental results demonstrate that the proposed method outperforms the state-of-the-art deraining methods.
The source code will be available at \url{https://supercong94.wixsite.com/supercong94}.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00