Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 12:05
21 Sep 2020

Gaussian processes (GP) can be used for inferring latent continuous functions also based on aggregate observations corresponding to integrals of the function, for example to learn daily rate of new infections in a population based on cumulative observations collected only weekly. We extend these approaches to cases where the observations correspond to aggregates of arbitrary non-linear transformations of a GP. Such models are needed, for example, when the latent function of interest is known to be non-negative or bounded. We present a solution based on Markov chain Monte Carlo with numerical integration for aggregation, and demonstrate it in binned Poisson regression and in non-invasive detection of fouling using ultrasound waves.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00