Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 12:26
21 Sep 2020

In this article, we propose automatic differentiation based methods for parameter estimation in non-linear state-space models. We use extended Kalman filter and cubature Kalman filters for approximating the negative log-likelihood (i.e., the energy function) of the parameter posterior distribution and compute the gradients and Hessians of this function by using automatic differentiation of the filter recursions. The proposed approach enables computing MAP estimates and forming Laplace approximations for the parameter posterior without a need for implementing complicated derivative recursions or manual computation of Jacobians. The methods are demonstrated in parameter estimation problems on a pendulum model and coordinated turn model.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00