Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 13:47
10 Jun 2020

In this work, we consider the joint design of a surveillance radar and a multiple-input multiple-output communication system sharing the same bandwidth. In this framework, we maximize the energy efficiency at the communication system (i.e., the amount of information reliably delivered per unit of consumed energy) under a constraint on the minimum signal-to-disturbance ratio for each inspected range-azimuth resolution cell of the radar. The transmit powers of both systems, the space-time linear communication codebook, and the radar receive filters are the degrees of freedom for joint system optimization. The block coordinate ascent method is used to find an approximate solution to this optimization problem, and a numerical example is provided to show the merits of the proposed design strategy.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00