Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 18:57
09 Jun 2020

Reliable detection and accurate estimation of weak targets and their Doppler frequencies is a challenging problem in MIMO radar systems. Reflections from such targets are often overpowered by those from stronger nearby targets and clutter. Considering a 3-D data model where the coherent processing interval comprises multiple pulses, a novel weak target detection and estimation approach is proposed in this paper. The proposed method is based on creating partially overlapping spatial beams, and performing canonical correlation analysis (CCA) in the resulting beamspace. It is shown that if a target is present in the overlapping sector, then its Doppler profile can be reliably estimated via beamspace CCA, even if hidden under much stronger interference from nearby targets and clutter. Numerical results are included to validate this theoretical claim, demonstrating that the proposed Beamspace Canonical Correlation (BCC) method yields considerable performance improvement over existing approaches.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00